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Abstract

This paper presents the acoustical wave propagator (AWP) technique to describe the time-dependent flexural wave

propagation, dynamic stress and power flow in an axisymmetrical circular plate. A combined scheme of Chebyshev

polynomial expansion and fast Fourier transformation is used to implement the operation of the AWP in polar

coordinates. The exact analytical solution of plate vibration velocity is used to compare with those obtained by the AWP

technique to verify its validity. Kinetic, potential and total energy densities, and power intensity are also studied for better

understanding of energy and power flow distributions in vibrating circular plate.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Thin circular plates are extensively used in mechanical, air/space and maritime industries as the basic
structural components, such as a circular mounting plate that attaches to the Slim Armstrong and Universal
Mounting System. Much numerical work has been carried out for analysing the axisymmetrical vibration of
circular plates. Pardoen and Hagen [1] and Pardoen [2] discussed the static, vibration and bending analysis of
axisymmetrical circular plates using the finite element method. Schmidt and Krenk [3] investigated the
asymmetric problem of a vibrating circular elastic plate on an elastic half-space by an integral equation
method. Later, Chang [4] presented statistical analysis of a circular plate on a random winkler support using
the small fluctuation approximation approach. Chang [5] investigated the axisymmetrical buckling of
moderately thick polar orthotropic annular plates. Mermertas and Belek [6] studied the static and dynamic
stability of variably thick orthotropic annular plates subjected to in-plate periodic forces. Roy and Ganesan [7]
concerned dynamic stress analysis of a tapered clamped-free annular circular plate under axisymmetrical
impact load. Recently, Wang [8] derived the relationships between Midlin and Kirchhoff bending solutions for
tapered circular and annular plates. Liew et al. [9] described the vibration analysis of circular Mindlin plates
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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using the differential quadrature method. Chang and Lee [10] solved large deformation problems in a circular
plate using the double-side method.

However, considerable studies mentioned above have been focused on the vibration analysis in the
frequency domain, only a few of researchers investigated wave propagation and dynamic stress concentration
of a circular plate. Hence, it is necessary to develop an effective and accurate time-domain numerical method
for studying the axisymmetrical flexural wave propagation, stress distribution and power flow in vibrating
circular plates. Most recently, Peng and Pan extended the acoustical wave propagator (AWP) method
developed by Pan and Wang [11] to describe the wave propagation in a thin plate [12], dynamic stress
concentration in a stepped plate [13], a ribbed plate [14] and a heterogeneous plate with multiple cylindrical
patches [15]. The previous papers of Peng and Pan are limited to structures in rectangular coordinates. The
main objective of this paper is to investigate wave propagation and dynamic stress distribution, and effects of
kinetic and potential energies on total energy densities, and power intensity in a circular plate. The analysis
and study provide a better understanding on dynamic stress and energy distributions in circular plates.
2. Theory of the AWP technique in polar coordinates

2.1. Derivatives of the AWP e�ðt�t0ÞĤ in polar coordinates

Fig. 1 shows a circular plate structure as common components of many practical engineering structures such
as the above-mentioned specific example. In this paper, the classical Kirchhoff’s thin plate theory is used to
investigate wave propagation and power flow. When the plate is suddenly disturbed by an axisymmetrical
impact load, which can be defined as an initial displacement, the wave motion cause dynamic moments and
shear forces, which generate internal stresses.

The stresses can be calculated by [16]

sr ¼ �
Eh

2ð1� u2Þ
q2w
qr2
þ

u
r

qw

qr

� �
; sy ¼ �

Eh

2ð1� u2Þ
1

r

qw

qr
þ u

q2w

qr2

� �
; sry ¼ 0, (1)

where wðr; tÞ represents the deflection displacement of the plate in the z direction; E, h and u denote the
Young’s modulus, thickness and Poisson’s ratio of the circular plate, respectively.

The maximum stress is calculated by

smax ¼ max sr;syf g. (2)
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Fig. 1. Schematic of a circular plate structure.



ARTICLE IN PRESS
S.Z. Peng, J. Pan / Journal of Sound and Vibration 296 (2006) 1013–1027 1015
The bending moments and twisting moment, and shear forces are given, in polar coordinates, as
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; My ¼ �D u
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1

r

q
qr
; D ¼

Eh3

12 1� u2ð Þ

is the flexural rigidity of the circular plate; and Qr and Qy are transverse shear forces.
The derivative of the shear force in the radial direction is

qQr

qt
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q3V

qr3
þ

1
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qr2
�
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� �
, (4)

where V(r,t) is the velocity of the plate (V ¼ qw=qt).
The governing equation for motion of this structure in polar coordinates is given by

rsh
q2wðr; tÞ

qt2
þDr4wðr; tÞ ¼ 0, (5)

where

r4w ¼
q4w
qr4
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and rs is the mass per unit area of the plate.
The system state equation can be described by the following wave equation:

q
qt

Fðr; tÞ ¼ �ĤFðr; tÞ, (6)

where F(r,t) is a state vector representing the velocity V and shear force Qr in the radial direction, and is
defined as

Fðr; tÞ ¼
V

Qr

" #
(7)

and Ĥ is the system operator defined as
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Eq. (6) can be rewritten by integrating with respect to time

Fðr; tÞ ¼ e�ðt�t0ÞĤFðr; t0Þ, (9)

where e�ðt�t0ÞĤ is the AWP and F(r,t0) denotes the initial state vector.
Through the operation of the AWP e�ðt�t0ÞĤ acting upon the initial state vector, we can obtain the state

vector F(r,t) of acoustical waves at any time t and at any position. It is noted that the system operator Ĥ

includes readily the effect of boundaries and spatial variation of the acoustical media due to the material
properties defined as a function of position.
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2.2. Implementation of the AWP e�ðt�t0ÞĤ in polar coordinates

The crucial step in the numerical implementation is the development of an efficient algorithm for
performing the operation of the AWP. The Chebyshev polynomial expansion (CPE) scheme has the significant
advantage that it allows the use of the very long time step. Meanwhile, this scheme has an exponential
convergent rate. More detailed accounts can be found in Refs. [12,13]. In this section, real Chebyshev
polynomials defined in the ranges of [�1,1] are used in the expansion of the AWP, so the system operation Ĥ

needs to be normalised by Ĥ
0
¼ Ĥ=

ffiffiffiffiffiffiffiffiffi
lmax

p
, where lmax represents the maximum eigenvalue of the system

operator Ĥ.
Using Chebyshev polynomials of the first kind, Eq. (9) can be further rewritten as
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0
Þfðr; t0Þ, (10)

where R ¼
ffiffiffiffiffiffiffiffiffi
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p
(t—t0); an Rð Þ ¼ 2In Rð Þ except a0 Rð Þ ¼ I0 Rð Þ and In Rð Þ is the nth-order modified Bessel

function of the first kind. The zero- and first-order Chebyshev polynomials are defined as T0 Ĥ
0

	 

¼ I and

T1 Ĥ
0

	 

¼ Ĥ

0
, and the remainder terms can be calculated by the following recursive formula:
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. (11)

Due to Ĥ
0
as a function of the spatial derivatives, the following Fourier transformation and its inverse

transformation is used to calculate the spatial derivatives of function F(r,t):

qn

qrn
f r; tð Þ ¼ F�1 jkrð Þ

nF f r; tð Þ½ �
� 

, (12)

where n ¼ 1, 2 and 3; F�1fg and F ½� represent the inverse Fourier transformation and Fourier transformation,
respectively; and kr is the bending wave number as in ejkrr.

The error analysis of the Fourier transformation method for the spatial derivatives has been given in Refs.
[11,12] to compare with other numerical schemes. The sampling interval is chosen to represent the highest
frequency component of interest in the medium, where the shortest wavelength is supported. When the spatial
sampling interval Dr is given, the discrete Fourier expansion of a wave packet supports the maximum wave
number. Therefore, the normalisation factor R can be calculated by

R ¼
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2.3. Power intensity and energy density in polar coordinates

The kinetic energy intensity per unit area is given by

Ek ¼
1
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The potential energy density is given by
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Therefore, the total vibration energy density is the sum of Eqs. (14) and (15)
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The power intensity Ir is defined as

I r ¼ Qr

qw

qt
þMr

q
qr

qw

qt

� �
. (17)

The relationship between the power intensity and energy density can be described as

I r ¼ CrE, (18)

where Cr is called the coefficient of the power intensity and energy density.
If we consider a typical unit Gaussian wave packet

wðr; tÞ ¼
1
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, (19)

where t ¼ bt=s2; m ¼ r=2s. w(r,t) and s represent the deflection displacement of the plate in the z-axis and
Gaussian factor, respectively.

The first-order derivative of w(r,t) with time is given by
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Therefore, the kinetic energy can be calculated by
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The derivative of qw=qt is given by
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The first-order derivative of W(r,t) is given by
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The second-order derivative of W(r,t) is given by
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The third-order derivative of W ðr; tÞ is given by
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The shear force and bending moment in the radial direction can be calculated by
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Similarly, the potential energy density can be calculated by

Ep ¼
D

8s4r2 1þ t2ð Þ
6
e �2m

2=ð1þt2Þð Þ z9 cos
2 m2t

1þ t2

� �
þ z10 sin

2m2t
1þ t2

� �
þ z11 sin

2 m2t
1þ t2

� �� �
, (31)

where

z9 ¼ r2z25 þ 4s2 t4 � 1
� �2

m2 þ 4mrsuz5 t4 � 1
� �

,

z10 ¼ r2z5z6 � 8s2 t4 � 1
� �

t2 þ 1
� �

tm2 þ 2mrsu t2 þ 1
� �

z6 t2 � 1
� �

� 2z5t
� �

,

z11 ¼ r2z6 þ 16s2 t2 þ 1
� �2

m2t2 � 8mrsuz6t t2 þ 1
� �

. ð32Þ

Therefore, the total energy under the initial Gaussian wave packet with unit magnitude
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where
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2
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2
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The power intensity Ir is calculated by

Ir ¼
�Db
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where
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2
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Finally, the coefficient of the power intensity and energy density Cr is given by

Cr ¼
�4Dbr2 zI1 cos
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� �
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The physical meaning about Cr is further termed the group velocity, which is used to describe not only
the relationship between the power intensity and energy density, but also the gradient of the dispersion
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relationship qo=qk between the angular frequency o and wave number k. Furthermore, it quantifies the speed
at which energy is transported by the dispersive wave. It is the velocity at which an amplitude function which is
impressed upon a carrier wave packet (a time-varying wave motion which can be represented as a summation
of numerous harmonic waves) travels, and it is of great physical importance.
2.4. Exact analytical solutions in polar coordinates

The exact analytical solutions are used to assess the prediction accuracy of the Chebyshev–Fourier scheme
developed in the previous section. The displacement of an axisymmetrical circular plate has the following
analytical solution [16]:

W ðr; tÞ ¼
f 0

1þ t2
e �m

2=ð1þt2Þð Þ cos
m2t

1þ t2

� �
þ t sin
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� �� �
, (38)

where t ¼ bt=s2; m ¼ r=2s, the coefficient b can be calculated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2=12r 1� u2ð Þ

q
. W(r,t), s and f0 represent

the deflection displacement of the plate in the z-axis, Gaussian factor and a constant, respectively.
According to the first- and second-order derivatives of W(r,t), the bending moments and stresses are,

respectively, given by
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and

sr ¼ �
Ehf 0

4sð1� u2Þð1þ t2Þ2
e �m

2=ð1þt2Þð Þ B1 cos
m2t

1þ t2

� �
þ B2 sin

m2t
1þ t2

� �� �
,

sy ¼ �
Ehf 0

4sð1� u2Þð1þ t2Þ2
e �m

2=ð1þt2Þð Þ B3 cos
m2t

1þ t2

� �
þ B4 sin

m2t
1þ t2

� �� �
, ð40Þ
-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

⏐V
ch

 -
- 

V
ex

⏐ 
(m

/s
)

x 10-4

r  (m)

Fig. 2. Absolute error of velocity between the predictions of the Chebyshev scheme and exact solution when r ¼ 0�5m and t ¼ 0.034 s.
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Fig. 3. Distributed flexural wave displacement at different instants by the AWP technique.
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where

B1 ¼
rðt4 � 6t2m2 þ 2m2 � 1Þ þ 2umsðt4 � 1Þ

sð1þ t2Þ2r
; B2 ¼

2trð3m2 � m2t2 � 1� t2Þ � 4umstð1þ t2Þ

sð1þ t2Þ2r
,

B3 ¼
urðt4 � 6t2m2 þ 2m2 � 1Þ þ 2msðt4 � 1Þ

sð1þ t2Þ2r
; B4 ¼

2utrð3m2 � m2t2 � 1� t2Þ � 4mstð1þ t2Þ

sð1þ t2Þ2r
. ð41Þ

It is noted that the stresses in Eq. (40) have the same distributions as the related moments in Eq. (39) except
the difference in magnitude. The maximum stress can be calculated by Eq. (2).
Fig. 4. Distributed flexural wave velocity at different instants by the AWP technique.
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3. Results and discussion

The predicted results of velocity by the Chebyshev–Fourier scheme are compared with those obtained by the
exact analytical solutions. A good agreement as shown in Fig. 2 shows that the Chebyshev–Fourier scheme
can be accurately used to predict the flexural wave propagation. The AWP technique is applied to investigate
the flexural wave propagation and power flow in a circular plate. Its material properties are E ¼ 21.6� 1010N/
m2, n ¼ 0:3 and r ¼ 7800 kg/m3. The thickness and radius of the circular plate are 0.002 and 5m, respectively.

The following initial state vector is chosen to demonstrate the application of the AWP

fðr; 0Þ ¼
0

Qr r; 0ð Þ

" #
, (42)

where Qr(r, 0) is related to the initial displacement W ðr; 0Þ ¼W 0e
�r2=4s2 . Other simulated parameters are given

as follows: W0 ¼ 0.001m, s ¼ 0:1, the number of grid points Nr ¼ Ny are 100. The spatial sampling intervals
Dr and Dy are 0.1m and 3.61, respectively. The evolution of wave packet and reflected waves with different
boundaries is observed with r ¼ 5m.

Fig. 3 shows the distributed flexural wave displacement at different instants by the AWP technique. In
addition, velocity distribution is very important to investigate the energy and power flow distribution in the
structure. Fig. 4 shows the distributed flexural wave velocity at different instants by the AWP technique. At
t ¼ 0 s, the initial velocity is zero, as illustrated in Fig. 4(a). After a very short time, for example, t ¼ 0.004 s,
around the centre of the circular plate, velocity has a very large negative magnitude (like a sharp impulse),
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as clearly shown in Fig. 4(b). The velocity distribution is much different from the displacement distribution
(Fig. 3), which has the largest magnitude at the initial condition and gradually spreads out with decreased
magnitude. As time increases, the negative components quickly decreased rather than the positive
components. As shown in Fig. 4(c), the distributed flexural wave velocity has two principal crests and one
principal trough. As time further increases, the dispersive feature of the flexural wave in the circular plate
causes more crests and troughs, as illustrated in Figs. 4(d) and (e). Due to the flexural wave speed of the
component with the highest frequency in the wave packet, the flexural wave velocity distributes the whole
observation range (0mprp5m) of the circular plate at t ¼ 0.034 s (Fig. 4(e)). It is worth noting that it seems
that the wave components in velocity distribution spread out with faster speeds than those in displacement
Fig. 6. Distribution of the principal stress at different instants by the AWP technique.
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distribution. At the same instant, the wave speed of the component of the velocity (shear force, bending
moment, stress and so on) is the same as that of the displacement. The difference in magnitude causes this
wrong impression.

It would be useful to compare the different between ansiymmetrical wave propagation with wave
propagation in one-dimensional flexural beam with the same thickness and material properties to the circular
plate. For this comparison, the wave propagation of an infinite beam with the same initial disturbance is now
considered. The general result of the displacement has the following form [16]:

wðx; tÞ ¼
f 0

1þ t2ð Þ
1=4

eð�x2=4s2ð1þt2ÞÞ � cos
x2t

4s2 1þ t2ð Þ

� �
�

1

2
tan�1ðtÞ

� �
, (43)
Fig. 7. Distribution of energy densities and power intensity at two different instants.
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where t ¼ b0t=s2, the coefficient b0 can be calculated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2=12r

q
; w(x,t) represents the

deflection displacement of the flexural beam in the z-axis; and s and f0 have the same values as those given in
Eq. (38).

The accuracy comparison for the Chebyshev–Fourier scheme with the above exact analytical solution
(Eq. (43)) has been described in Ref. [17]. Here, the displacement difference between the circular plate and
one-dimensional flexural beam at three different instants is shown in Fig. 5 based on the same simulated
Fig. 8. Coefficients of energy densities and power intensity at different instants.
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parameters and initial impulse (Fig. 5(a)). At t ¼ 0.017 s, although the material properties and simulated
parameters including the initial wave packet are kept the same, the wave propagation patterns are much
different, which can reflected by the comparison of the maximum magnitudes of beam displacement (0.4mm
in Fig. 5(b) and 0.3mm in Fig. 5(c)) and those of the circular plate (0.15mm in Fig. 5(b) and 0.04mm in
Fig. 5(c). It is worth noting that the propagation velocities along the radius direction (not vibrating flexural
velocity along z direction) are a slight different between the beam and circular plate because Poisson’s ratio u is
considered in the circular plate D ¼ Eh3=12ð1� u2Þ. If the effect of Poisson’s ratio u is neglected, then the
distributed flexural wave displacements have only difference in magnitudes, not phases, between the circular
plate and the beam.

Fig. 6 shows the principal stress distribution at six different instants. Compared with patterns in Figs. 3 and
4, the principal stress has the similar distribution as Fig. 3 at t ¼ 0 and 0.004 s except the difference in
magnitude. The initial stress is concentrated on the centre of this structure. As time increases, the principal
stress spreads out with decreased magnitude as illustrated in Figs. 6(b)–(f). It is noted that the principal stress
has similar distribution as velocity rather than displacement at later instants.

Fig. 7 shows distributions of energy densities and power intensity at two different instants. At t ¼ 0.017 s,
the kinetic energy density has the similar distribution as the velocity except in magnitude. It is noted that the
kinetic energy density just consists of positive component (crests). Compared with the kinetic energy density,
the potential density has much smaller magnitude, as shown in Fig. 7(a). Therefore, the total energy density
has the same pattern as the kinetic density. The power intensity has the larger (100 times) magnitude than the
potential density, and the small (10 times) magnitude than the kinetic density, as shown in Fig. 7(a). At
t ¼ 0.034 s, the magnitude of the kinetic energy density decreases quickly, especially the central crests.
Similarly, the potential density has negligible magnitude compared with the kinetic density, as shown in Fig.
7(b). The total energy density is dependent on the kinetic density. The power intensity has the similar
distribution as the total energy density except in magnitude at the instant t ¼ 0.034 s. Generally, the above
analysis will help to obtain a good understanding of effects of kinetic energy and potential energy densities on
the total energy density.

Fig. 8 illustrates the distribution of coefficients of energy densities Ek, Ep, Et, and power intensity Ir at six
different instants. The unit of the coefficient Cr is m/s. At t ¼ 0 s, the coefficient Cr is zero because the initial
velocity is zero (Eq. (15)). As time increases, at t ¼ 0.006 s, the power intensity Ir is larger than the total energy
Et as shown in Fig. 8(b). Each circular curve presents propagating frequency component. It is noted that Fig.
8(c) shows much different distribution. Near the edge of the plate, the coefficient Cr has much larger value
than other frequency components. After t ¼ 0.009 s, the coefficient is less than 1, and then gradually decreases.
Above analysis will help to obtain a thorough understanding of the relationships among kinetic energy,
potential energy densities, and the total energy density.
4. Conclusions

In this paper, the acoustical wave propagator (AWP) technique is extended to describe the time-domain
evolution of wave packet in a circular plate in polar coordinates. A Chebyshev polynomial expansion scheme
is implemented to carry out the operation of the AWP in polar coordinates. Compared with exact analytical
solution of velocity, this scheme is found to be accurate and computationally effective for the prediction of the
time-domain evolution of acoustical waves. The coefficient of the power intensity and energy density is
described in details. The above analysis is helpful to get a good understanding of the relationship between the
kinetic energy, potential energy, the total energy and power flow.
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